English

Evaluate the following limits: lim x → 0 cos a x − cos b x cos c x − 1 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits: 

limx0cosaxcosbxcoscx1 

Solution

limx0cosaxcosbxcoscx1

=limx02sin(ax+bx2)sin(axbx2)2sin2cx2(1cos2θ=2sin2θ)

=limx0(a+b2)x×sin(a+b2)x(a+b2)x×(ab2)x×sin(ab2)x(ab2)xc2x24×sin2cx2c2x24

=(a+b)(ab)c2×limx0sin(a+b2)x(a+b2)x×limx0sin(ab2)x(ab2)x(limx0sincx2cx2)2

=a2b2c2×1×11(limθ0sinθθ=1)

=a2b2c2

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.7 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.7 | Q 61 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find limx5f(x), where f(x)  = |x| - 5


limx27(x1/3+3)(x1/33)x27 


limx(3x1)(4x2)(x+8)(x1) 


limx3x1+4x25x1+6x2


limn[1+2+3......n1n2] 


limn[13+23+....n3n4]


limx(x28x+x) 


Evaluate: limn1.2+2.3+3.4+...+n(n+1)n3 


limx0sin3x5x 


limx0sinxnxn 


limx0cosaxcosbxcoscxcosdx 


limx03sin2x+2x3x+2tan3x 


limx0xcosx+2sinxx2+tanx 


limx01cos2x+tan2xxsinx 


limx0sin(a+x)+sin(ax)2sinaxsinx 


limx0x3cotx1cosx 


limx0cos2x1cosx1 


limxπ41sin2x1+cos4x 


limnsin(a2n)sin(b2n)


limx0sin2xex1 


limx0log(3+x)log(3x)x 


limn(1+xn)n


limx0(cosx+sinx)1/x


Write the value of limx0[x].


Write the value of limx2|x2|x2. 


Write the value of limx0sinxx.


limxaxnanxa  is equal at 


limxπ/42cosx1cotx1 is equal to


limnn!(n+1)!+n!  is equal to


limx0|sinx|x


If f(x)={sin[x][x],[x]00,[x]=0  where  denotes the greatest integer function, then limx0f(x)  


if limx2xn-2nx-2 = 80 then find the value of n.


If the value of limx1(1-(1-x))mx is 99, then n = ______.


Evaluate limh0(a+h)2sin(a+h)-a2sinah


If limx1x4-1x-1=limxkx3-l3x2-k2, then find the value of k.


Evaluate the Following limit:

limx3[x+6x]


Evaluate the following limit :

limx7[(x3-73)(x3+73)x-7]


Evaluate the following limit:

limx5[x3-125x5-3125]


Evaluate the Following limit:

limx7[(x3-73)(x3+73)x-7]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.