Advertisements
Advertisements
Question
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
Solution
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
`therefore cos^2 beta x - cos^2alpha x`
`= cos^2betax - cos^2alphax + cos^2betax * cos^2alphax - cos^2betax * cos^2alphax`
= `cos^2 beta x - cos^2 beta x * cos^2 alpha x - cos^2 alpha x + cos^2 beta x * cos^2 alpha x`
= `cos^2 beta x (1 - cos^2 alpha x) - cos^2 alpha x (1 - cos^2 beta x)`
= `cos^2 beta x * sin^2 alpha x - cos^2 alpha x * sin^2 beta x`
= `(cos beta x * sin alpha x)^2 - (cos alpha x * sin beta x)`
= `(cos beta x * sin alpha x + cos alpha x * sin beta x)(cos beta x * sin alpha x - cos alpha x * sin beta x)`
= `sin (alpha x + beta x) sin (alphax - betax)` ...[sin (A ± B) = sin A cos B ± cos A sin B]
= `sin (alpha + beta)x sin (alpha - beta)x`
`therefore lim_(x->0) (x{sin (alpha + beta )x + sin (alpha - beta)x + sin 2 alpha x})/(sin (alpha + beta)x sin (alpha - beta) x)`
`lim_(x->0) ((x{sin (alpha + beta )x + sin (alpha - beta)x + sin 2 alpha x})/x^2)/((sin (alpha + beta)x sin (alpha - beta) x)/x^2)`
`lim_(x->0) ((sin (alpha + beta)x)/x + (sin (alpha - beta)x)/x + (sin 2 alpha x)/x)/((sin (alpha + beta)x)/x xx (sin (alpha - beta)x)/x)`
`lim_(x->0) ((sin (alpha + beta)x)/((alpha + beta) x) xx (alpha + beta) + (sin (alpha - beta)x)/((alpha - beta)x) xx (alpha - beta) + (sin 2 alpha x)/(2alphax) xx 2alpha)/((sin (alpha + beta)x)/((alpha + beta)x) xx (alpha + beta) xx (sin (alpha - beta)x)/((alpha - beta)x) xx (alpha - beta))`
`= (alpha + beta + alpha - beta + 2alpha)/((alpha + beta)(alpha - beta))`
`= (4alpha)/(alpha^2 - beta^2)`
APPEARS IN
RELATED QUESTIONS
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\] is equal to
Evaluate the following limit:
`lim_(x -> 3) [sqrt(x + 6)/x]`
if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.
Evaluate the following limit :
`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`