Advertisements
Advertisements
Question
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
Solution
\[\lim_{x \to 0} \left[ \frac{\cos 3x - \cos 7x}{x^2} \right]\]
\[= \lim_{x \to 0} \left[ \frac{- 2\sin\left( \frac{3x + 7x}{2} \right)\sin\frac{\left( 3x - 7x \right)}{2}}{x^2} \right] \left[ \cos C - \cos D = - 2\sin\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ = \lim_{x \to 0} \left[ \frac{- 2\sin 5x \sin \left( - 2x \right)}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2\sin 5x \sin 2x}{x^2} \right] \left[ \because \sin\left( - \theta \right) = - \sin\theta \right]\]
\[ = 2 \lim_{x \to 0} \left[ \frac{\sin 5x}{5x} \times \frac{\sin 2x}{2x} \right] \times 5 \times 2\]
\[\]
\[ = 2 \times 5 \times 2\]
\[ = 20\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\]
\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
`1/(ax^2 + bx + c)`
Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when" x ≠ pi/2),(3",", x = pi/2 "and if" f(x) = f(pi/2)):}` find the value of k.
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`