English

Lim X → π 1 + Cos X Tan 2 X - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 

Solution

\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[ = \lim_{h \to 0} \frac{1 + \cos \left( \pi + h \right)}{\tan^2 \left( \pi + h \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{\tan^2 h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{\tan^2 h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{4\left( \frac{h^2}{4} \right) \times \frac{\tan^2 h}{h^2}}\]
\[ = \frac{1}{2} \frac{\lim_{h \to 0} \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right)^2}{\lim_{h \to 0} \left( \frac{\tan h}{h} \right)^2}\]
\[ = \frac{1}{2} \times \frac{\left( 1 \right)^2}{\left( 1 \right)^2} = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.8 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.8 | Q 32 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to 


The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 


\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]


Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×