Advertisements
Advertisements
Question
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
Options
\[\frac{1}{8\sqrt{3}}\]
\[\frac{1}{\sqrt{3}}\]
$\mathnormal{8 \sqrt{3}}$
\[\sqrt{3}\]
Solution
\[(a)\]
\[ \because \lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x}} - \sqrt{3}}{x - 2} = \lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x}} - \sqrt{3}}{x - 2} \times \frac{\sqrt{1 + \sqrt{2 + x}} + \sqrt{3}}{\sqrt{1 + \sqrt{2 + x}} + \sqrt{3}}\]
\[ = \lim_{x \to 2} \frac{\sqrt{2 + x} - 2}{\left( x - 2 \right)\left( \sqrt{1 + \sqrt{2 + x}} + \sqrt{3} \right)}\]
\[ = \lim_{x \to 2} \frac{\sqrt{2 + x} - 2}{\left( x - 2 \right)\left( \sqrt{1 + \sqrt{2 + x}} + \sqrt{3} \right)} \times \frac{\sqrt{2 + x} + 2}{\sqrt{2 + x} + 2}\]
\[ = \lim_{x \to 2} \frac{\left( x - 2 \right)}{\left( x - 2 \right)\left( \sqrt{1 + \sqrt{2 + x}} + \sqrt{3} \right)\left( \sqrt{2 + x} + 2 \right)}\]
\[ = \lim_{x \to 2} \frac{1}{\left( \sqrt{1 + \sqrt{2 + x}} + \sqrt{3} \right)\left( \sqrt{2 + x} + 2 \right)}\]
\[ = \frac{1}{\left( \sqrt{1 + \sqrt{2 + 2}} + \sqrt{3} \right)\left( \sqrt{2 + 2} + 2 \right)}\]
\[ = \frac{1}{2\sqrt{3} \times 4}\]
\[ = \frac{1}{8\sqrt{3}}\]
\[\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to 0} \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit :
`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`