English

Lim X → 1 { X − 2 X 2 − X − 1 X 3 − 3 X 2 + 2 X } - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 

Solution

\[\lim_{x \to 1} \left[ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{x - 2}{x\left( x - 1 \right)} - \frac{1}{x\left( x^2 - 3x + 2 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{x - 2}{x\left( x - 1 \right)} - \frac{1}{x\left( x^2 - 2x - x + 2 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{x - 2}{x\left( x - 1 \right)} - \frac{1}{x\left\{ x\left( x - 2 \right) - 1\left( x - 2 \right) \right\}} \right]\] 

\[= \lim_{x \to 1} \left[ \frac{x - 2}{x\left( x - 1 \right)} - \frac{1}{x\left( x - 1 \right)\left( x - 2 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{\left( x - 2 \right)^2 - 1}{x\left( x - 1 \right)\left( x - 2 \right)} \right]\]
\[= \lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( x - 3 \right)}{x\left( x - 1 \right)\left( x - 2 \right)} \right]\]
\[ = \frac{\left( 1 - 3 \right)}{1\left( 1 - 2 \right)}\]
\[ = \frac{- 2}{- 1}\]
\[ = 2\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.3 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.3 | Q 33 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\] 


\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\] 


\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\] 


\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\] 


\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\] 


\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]


\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number. 


\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\] 


\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to 


\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to 


\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to 


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


Number of values of x where the function

f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3","  π):}`

is discontinuous, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×