English

Evaluate the Following Limit: Lim X → 1 X 7 − 2 X 5 + 1 X 3 − 3 X 2 + 2 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 

Solution

When x = 1, the expression \[\frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\]assumes the form \[\frac{0}{0}\] So, (x − 1) is a factor of numerator and denominator. 

Using long division method, we get

\[x^7 - 2 x^5 + 1 = \left( x - 1 \right)\left( x^6 + x^5 - x^4 - x^3 - x^2 - x - 1 \right)\] and \[x^3 - 3 x^2 + 2 = \left( x - 1 \right)\left( x^2 - 2x - 2 \right)\] 

\[\therefore \lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\]
\[ = \lim_{x \to 1} \frac{\left( x - 1 \right)\left( x^6 + x^5 - x^4 - x^3 - x^2 - x - 1 \right)}{\left( x - 1 \right)\left( x^2 - 2x - 2 \right)}\]
\[ = \lim_{x \to 1} \frac{x^6 + x^5 - x^4 - x^3 - x^2 - x - 1}{x^2 - 2x - 2}\]
\[ = \frac{1 + 1 - 1 - 1 - 1 - 1 - 1}{1 - 2 - 2}\]
\[ = \frac{- 3}{- 3}\]
\[ = 1\]
\[\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.3 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.3 | Q 34 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


\[\lim_{x \to 0} 9\] 


\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\] 


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\] 


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


`1/(ax^2 + bx + c)`


If `f(x) = {{:(x + 2",",  x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists


Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×