English

Lim X → a Cos X − Cos a X − a - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 

Solution

\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[ = \lim_{x \to a} \frac{- 2 \sin \left( \frac{x + a}{2} \right) \sin \left( \frac{x - a}{2} \right)}{2\left( \frac{x - a}{2} \right)} \left[ \because \cos A - \cos B - 2 \sin \left( \frac{A - B}{2} \right) \sin \left( \frac{A + B}{2} \right) \right]\]
\[ = \lim_{x \to a} - \sin \left( \frac{x + a}{2} \right) \left[ \because \lim_\theta \to a \sin\frac{\left( \theta - a \right)}{\left( \theta - a \right)} = 1 \right]\]
\[ = - \sin \left( \frac{2a}{2} \right)\]
\[ \Rightarrow - \sin a\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.8 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.8 | Q 5 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.


\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\] 


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\] 


\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\] 


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\] 


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\] 


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{\sin 3x}{5x}\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\] 

 


\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]


\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to 


The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is 


The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\] 


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.


Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×