Advertisements
Advertisements
Question
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
Solution
\[\lim_{x \to \infty} \left[ \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}} \right]\]
\[\text{ Rationalising the numerator and the denominator }:\]
\[ \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + a^2} - \sqrt{x^2 + b^2} \right)}{\left( \sqrt{x^2 + c^2} - \sqrt{x^2 + d^2} \right)} \times \frac{\left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)}{\left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)} \times \frac{\left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)}{\left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + a^2} - \sqrt{x^2 + b^2} \right) \left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right) \left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)}{\left( \sqrt{x^2 + c^2} - \sqrt{x^2 + d^2} \right) \left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right) \left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)} \right]\]
\[ = \lim_{x \to \infty} \frac{\left( x^2 + a^2 \right) - \left( x^2 + b^2 \right)}{\left( x^2 + c^2 \right) - \left( x^2 + d^2 \right)} \times \left( \frac{\sqrt{x^2 + c^2} + \sqrt{x^2 + d^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \right)\]
\[ {= \lim}_{x \to \infty} \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{x^2 + c^2} + \sqrt{x^2 + d^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \right)\]
\[\text{ Dividing the numerator and the denominator byx }:\]
\[ \lim_{x \to \infty} \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{1 + \frac{c^2}{x^2}} + \sqrt{1 + \frac{d^2}{x^2}}}{\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 + \frac{b^2}{x^2}}} \right)\]
\[As x \to \infty , \frac{1}{x}, \frac{1}{x^2} \to 0\]
\[ = \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{1} + \sqrt{1}}{\sqrt{1} + \sqrt{1}} \right)\]
\[ = \frac{a^2 - b^2}{c^2 - d^2}\]
APPEARS IN
RELATED QUESTIONS
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`
Evaluate the Following limit:
`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`