limx→∞x4x2+1−1
limx→∞[x4x2+1−1] Rationalising the denominator Rationalising the denominator :limx→∞[x(4x2+1−1)(4x2+1+1)(4x2+1+1)]=limx→∞[x(4x2+1+1)4x2+1−1]=limx→∞[4x2+1+14x] Dividing the numerator and the denominator by Dividing the numerator and the denominator by x:limx→∞[4x2+1x+1x4]=limx→∞[4x2+1x2+1x4]=limx→∞[4+1x2+1x4]x→∞∴1x,1x2→0=44=24=12
limx→0x2/3−9x−27
limx→2(3−x)
limx→−1(4x2+2)
limx→4x2−7x+12x2−3x−4
limx→2(1x−2−2x2−2x)
limx→3x2−x−6x3−3x2+x−3
limx→1x15−1x10−1
limx→−1x3+1x+1
If limx→ax3−a3x−a=limx→1x4−1x−1, find all possible values of a.
limx→∞(3x−1)(4x−2)(x+8)(x−1)
limx→0tanmxtannx
limx→0sec5x−sec3xsec3x−secx
limx→02−1+cosxx2
limx→0x2+1−cosxxsinx
limx→01−cos5x1−cos6x
limx→0cosecx−cotxx
limx→03sinx−sin3xx3
limx→π22−sinx−1(π2−x)2
limx→−1x2−x−2(x2+x)+sin(x+1)
limx→π1+cosxtan2x
limx→π6cot2x−3cosecx−2
Write the value of limx→01−cos2xx.
Write the value of limx→0−[x].
Write the value of limx→1−x−[x].
limx→0sin2xx
limx→0xtanxis
limx→3x−3|x−3|, is equal to
limx→axn−anx−a is equal at
limx→3∑r=1nxr−∑r=1n3rx−3is real to
limn→∞n!(n+1)!+n! is equal to
limx→∞axsin(bax),a,b>1 is equal to
The value of limx→∞n!(n+1)!−n!
limx→3x5-243x3-27 = ?
Evaluate the following limit:
limx→7[(x3-73)(x3+73)x-7]
Evaluate the Following limit:
limx→3[x+6x]