English

Lim X → − 1 X 2 − X − 2 ( X 2 + X ) + Sin ( X + 1 ) - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]

Solution

\[\lim_{x \to - 1} \frac{x^2 - x - 2}{x^2 + x + \sin \left( x + 1 \right)}\]
\[ = \lim_{x \to - 1} \frac{\left( x - 2 \right) \left( x + 1 \right)}{x\left( x + 1 \right) + \sin \left( x + 1 \right)}\]
\[Let y = x + 1\]
\[If x \to - 1, then y \to 0 . \]
\[ = \lim_{y \to 0} \frac{\left( y - 3 \right)y}{\left( y - 1 \right)y + \sin y}\]
\[\text{ Dividing the numerator and the denominator by } y:\]
\[ = \lim_{y \to 0} \frac{\left( y - 3 \right)}{\left( y - 1 \right) + \frac{\sin y}{y}}\]
\[ = \frac{0 - 3}{\left( 0 - 1 \right) + 1}\]
\[ \Rightarrow \frac{- 3}{0} = \infty\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.8 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.8 | Q 27 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\] 


\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]


Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]


\[\lim_{x \to 0}  \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


Evaluate the following limit:

`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×