English

Lim X → 0 Sin ( a + X ) + Sin ( a − X ) − 2 Sin a X Sin X - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\] 

Solution

\[\lim_{x \to 0} \left[ \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{a + x + a - x}{2} \right) \cos \left( \frac{a + x - a + x}{2} \right) - 2 \sin a}{x \sin x} \right] \left\{ \because \sin C + \sin D = 2 \sin \left( \frac{C + D}{2} \right)\cos \left( \frac{C - D}{2} \right) \right\}\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin a \cos x - 2 \sin a}{x \sin x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin a \left( \cos x - 1 \right)}{x \sin x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin a \left( 1 - 2 \sin^2 \frac{x}{2} - 1 \right)}{x \sin x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin a \left( - 2 \sin^2 \frac{x}{2} \right)}{x \sin x} \right]\]
\[ = - 4 \sin a \lim_{x \to 0} \left[ \frac{1}{\frac{x \sin x}{x^2}} \times \frac{\sin \left( \frac{x}{2} \right)}{\frac{x}{2}} \times \frac{\sin\left( \frac{x}{2} \right)}{\frac{x}{2}} \times \frac{1}{4} \right]\]
\[ = - 4 \sin a \times \frac{1}{1} \times 1 \times 1 \times \frac{1}{4}\]
\[ = - \sin a\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.7 [Page 50]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.7 | Q 32 | Page 50

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\] 


\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\] 


\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\] 


\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\] 


\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\] 


\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\] 


If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\] 


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\] 


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


Evaluate the following limit: 

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

\[\lim_{x \to 0} \frac{\sin 2x}{x}\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to 


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


Evaluate the following limit:

`lim_(x -> 3) [sqrt(x + 6)/x]`


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×