English

Lim X → ∞ [ X { √ X 2 + 1 − √ X 2 − 1 } ] - Mathematics

Advertisements
Advertisements

Question

limx[x{x2+1x21}] 

Solution

limx[x{x2+1x21}]
 Rationalising the numerator :
limx[x{(x2+1x21)(x2+1+x21)(x2+1+x21)}]
=limx[x{(x2+1)(x21)(x2+1+x21)}]
=limx[x×2(x2+1+x21)]
 Dividing the numerator and the denominator by x:
limx[2x2+1x2+x21x2]
=limx[2x2+1x2+x21x2]
=limx[21+1x2+11x2]
=21+1
=2

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.6 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.6 | Q 12 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

limxax+ax+a 


limx03x+1x+3 


limx3x481x29 


limx2x38x24 


limx1(1x12x21)


If limxax5a5xa=405,find all possible values of a

 

 


If limxax3a3xa=limx1x41x1, find all possible values of a


limx5x369+4x6


limxx2+a2x2+b2x2+c2x2+d2 


limx0sinxcosx3x 


limx03sinx4sin3xx 


limh0(a+h)2sin(a+h)a2sinah 


limx01+sinx1sinxx 


limx0xcosx+sinxx2+tanx 


limθ0sin4θtan3θ 


limx0tan2xsin2xx3


Evaluate the following limit: 

limx0sin(α+β)x+sin(αβ)x+sin2αxcos2βxcos2αx


limxacosxcosaxa 


limx11x2sinπx


limxπ2+cosx1(πx)2


limxπ1+cosxtan2x 


limx0log(3+x)log(3x)x 


Write the value of limx1x[x]. 


Write the value of limx0+[x].


limx0(1cos2x)sin5xx2sin3x=


limh0{1h8+h312h}=


limx3r=1nxrr=1n3rx3is real to


The value of limxn!(n+1)!n! 


Evaluate the following limit:

limx5[x3-125x5-3125]


Evaluate the following limit:

limx7[(x3-73)(x3+73)x-7]


Evaluate the following limits: limy1[2y-27+y3-2]


Evaluate the following Limits: limxa(x+2)53-(a+2)53x-a


limx3x5-243x3-27 = ?


Evaluate limh0(a+h)2sin(a+h)-a2sinah


1ax2+bx+c


If f(x)={x+2, x-1cx2,x>-1, find 'c' if limx-1f(x) exists


Evaluate the following limit :

limx3[x+6x]


Evaluate the following limit:

limx5[x3-125x5-3125]


Evaluate the following limit.

limx3[x+6x]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.