Advertisements
Advertisements
Question
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
Solution
`lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
Put x + 2 = y and a + 2 = b
As x → a, x + 2 → a + 2
i.e. y → b.
∴ `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
= `lim_(x -> "a") (y^(5/3) - "b"^(5/3))/((y - 2) - ("b" - 2)`
= `lim_(y -> "b") (y^(5/3) - "b"^(5/3))/(y - "b")`
= `5/3"b"^(2/3) ...[lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `5/3("a" + 2)^(2/3)` ...[∵ b = a + 2]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]