Advertisements
Advertisements
Question
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
Solution
\[\lim_{x \to 0} \left[ \frac{\sin 5x - \sin 3x}{\sin x} \right]\]
\[= \lim_{x \to 0} \left[ \frac{2\cos\left( \frac{5x + 3x}{2} \right)\sin\left( \frac{5x - 3x}{2} \right)}{\sin x} \right] \left[ \because sinC - sinD = 2\cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2\cos4x . \sin x}{\sin x} \right]\]
\[ = 2 \cos0\]
\[ = 2\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\]
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
Which of the following function is not continuous at x = 0?
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`
Evaluate the Following limit:
`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`