English

Lim X → a Cos X − Cos a √ X − √ a - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]

Solution

\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[ = \lim_{x \to a} \frac{- 2 \sin \left( \frac{x + a}{2} \right) \sin \left( \frac{x - a}{2} \right)}{\sqrt{x} - \sqrt{a}}\]
\[\text{ Dividing the numerator and the denominator by  }\sqrt{x} + \sqrt{a}: \]
\[ - 2 \lim_{x \to a} \frac{\left( \sin \left( \frac{x + a}{2} \right)\sin \left( \frac{x - a}{2} \right) \right)}{2\left( \frac{x - a}{2} \right)}\left( \sqrt{x} + \sqrt{a} \right)\]
\[ = - 2 \lim_{x \to a} \sin \left( \frac{x + a}{2} \right) \times \frac{\sin \left( \frac{x - a}{2} \right)}{2\left( \frac{x - a}{2} \right)}\left( \sqrt{x} + \sqrt{a} \right)\]
\[ \Rightarrow - 2 \sin \left( \frac{2a}{2} \right) \left( \frac{\sqrt{a} + \sqrt{a}}{2} \right)\]
\[ = - 2\sqrt{a} \sin a\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.8 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.8 | Q 14 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 0} 9\] 


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\] 


\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\] 


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]


\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 


\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\] 


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\]  is equal at 


\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 


\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to 


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.


Evaluate the following limit :

`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×