English

Let ,when,and iff(x)={kcosxπ-2x,when x≠π23,x=π2 and if f(x)=f(π2) find the value of k. - Mathematics

Advertisements
Advertisements

Question

Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.

Sum

Solution

Given, `f(x) = {{:((k cos x)/(pi - 2x)",",  x ≠ pi/2),(3",",  x = pi/2):}`

L.H.L, `f(x) = lim_(x -> pi^-/2) (k cos x)/(pi - 2x)`

= `lim_(h -> 0) (k cos (pi/2 - h))/(pi - 2(pi/2 - h))`

= `lim_(h -> 0) (k sin h)/(pi - pi + 2h)`

= `lim_(h -> 0) (k sin h)/(2h)`

= `l/2 * 1`

= `k/2`  ......`[because  lim_(h -> 0) sinh/h = 1]`

R.H.L. `f(x) = lim_(x -> pi^+/2) (k cos x)/(pi - 2x)`

= `lim_(h -> 0) (k cos (pi/2 + h))/(pi - 2(pi/2 + h))`

= `lim_(h -> 0) (-k sin h)/(pi - pi - 2h)`

= `lim_(h -> 0) (-k sin h)/(-2h)`

= `k/2`  ....`[because  lim_(h -> 0)  sinh/h = 1]`

We are given that `lim_(x -> pi/2) f(x)` = 3

So, `k/2` = 3

⇒ k = 6

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 242]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 52 | Page 242

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\]  find the value of n


Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\] 


\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


Which of the following function is not continuous at x = 0?


Let f(x) = `{{:(3^(1/x);   x < 0","                "then at"  x = 0),(lambda[x];   x ≥ 0","   lambda ∈ "R"):}`

Evaluate the Following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×