English

If Lim X → 3 X N − 3 N X − 3 = 108 , Find the Value of N. - Mathematics

Advertisements
Advertisements

Question

If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\]  find the value of n

Solution

\[\lim_{x \to 3} \left[ \frac{x^n - 3^n}{x - 3} \right] = 108\] 

⇒ x(3)n – 1 = 108
⇒ x(3)n – 1 = 4 × 33

On comparing LHS and RHS, we observe that x is equal to 4. 

\[\begin{array}{c|c|c}2 & 108 \\ 2 & 54 \\ 3 & 27 \\ 3 & 9 \\ 3 & 3 \\& 1\end{array}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.5 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.5 | Q 12 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\] 


\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\] 


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\] 


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]


\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{x \to 0} \frac{x}{\tan x} is\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 


The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is 


The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\] 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


Let f(x) = `{{:(3^(1/x);   x < 0","                "then at"  x = 0),(lambda[x];   x ≥ 0","   lambda ∈ "R"):}`

Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the following limit :

`lim_(x->3)[sqrt(x+6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×