Advertisements
Advertisements
Question
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
Solution
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
Put
\[x = \pi + h\] When \[x \to \pi, h \to 0\]
\[\therefore \lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi + h}{2} \right)}{\cos\left( \frac{\pi + h}{2} \right)\left[ \cos\left( \frac{\pi + h}{4} \right) - \sin\left( \frac{\pi + h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi}{2} + \frac{h}{2} \right)}{\cos\left( \frac{\pi}{2} + \frac{h}{2} \right)\left[ \cos\left( \frac{\pi}{4} + \frac{h}{4} \right) - \sin\left( \frac{\pi}{4} + \frac{h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \cos\left( \frac{h}{2} \right)}{- \sin\left( \frac{h}{2} \right)\left[ \left( \cos\frac{\pi}{4}\cos\frac{h}{4} - \sin\frac{\pi}{4}\sin\frac{h}{4} \right) - \left( \sin\frac{\pi}{4}\cos\frac{h}{4} + \cos\frac{\pi}{4}\sin\frac{h}{4} \right) \right]}\]
\[= \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{4}}{- 2\sin\frac{h}{4}\cos\frac{h}{4}\left( \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} - \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin\frac{h}{4}}{- \cos\frac{h}{4} \times \left( - \sqrt{2}\sin\frac{h}{4} \right)}\]
\[ = \frac{1}{\sqrt{2}} \times \frac{1}{\lim_{h \to 0} \cos\frac{h}{4}}\]
\[ = \frac{1}{\sqrt{2}} \times 1 \left( \lim_\theta \to 0 \cos\theta = 1 \right)\]
\[ = \frac{1}{\sqrt{2}}\]
APPEARS IN
RELATED QUESTIONS
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\]
\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\]
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`