English

The Value of Lim X → ∞ ( X + 1 ) 10 + ( X + 2 ) 10 + . . . + ( X + 100 ) 10 X 10 + 10 10 is - Mathematics

Advertisements
Advertisements

Question

The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 

Options

  • 10 

  •  100 

  • 1010 

  • none of these

     

MCQ

Solution

\[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\]
\[\text{ Dividing } N^r \text{ and } D^r \text{ by } x^{10} : \]
\[ \Rightarrow \lim_{x \to \infty} \frac{\left( 1 + \frac{1}{x} \right)^{10} + \left( 1 + \frac{2}{x} \right)^{10} + . . . . + \left( 1 + \frac{100}{x} \right)^{10}}{1 + \frac{{10}^{10}}{x^{10}}}\]
\[ = 1 + 1 + 1 + . . . + 100 \text{ times }\]
\[ = 100\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.13 [Page 80]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.13 | Q 37 | Page 80

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Suppose f(x)  = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}`  and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?


\[\lim_{x \to 2} \left( 3 - x \right)\] 


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\] 


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\] 


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{\sin \left( 2 + x \right) - \sin \left( 2 - x \right)}{x}\]


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\] 


\[\lim_{x \to 0} \frac{\sin 2x}{x}\] 


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]


The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is 


Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×