Advertisements
Advertisements
Question
Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`
Solution
Given that `lim_(x -> 0) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`
Dividing the numerator and denominator by x, we get
= `lim_(x -> 0) (((1 + x)^6 - 1)/x)/(((1 + x)^2 - 1)/x)`
Putting 1 + x = y
⇒ x = y – 1
= `lim_((y - 1 -> 0),(because y -> 1)) ((y^6 - (1)^6)/(y - 1))/((y^2 - (1)^2)/(y - 1))`
= `(lim_(y -> 1) (y^6 - (1)^6)/(y - 1))/(lim_(y -> 1) (y^2 - (1)^2)/(y - 1))` .....`[lim_(x -> a) (f(x))/(g(x)) = (lim_(x -> a) f(x))/(lim_(x -> a) g(x))]`
= `(6 * (1)^(6 - 1))/(2 * (1)^(2 - 1))`
= `6/2`
= 3 ......`["Using" lim_(x -> a) (x^n - a^n)/(x - a) = n * a^(n - 1)]`
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\]
\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->3)[sqrt(x+6)/x]`