English

Evaluate: limx→1(1+x)6-1(1+x)2-1 - Mathematics

Advertisements
Advertisements

Question

Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`

Sum

Solution

Given that `lim_(x -> 0) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`

Dividing the numerator and denominator by x, we get

= `lim_(x -> 0) (((1 + x)^6 - 1)/x)/(((1 + x)^2 - 1)/x)`

Putting 1 + x = y

⇒ x = y – 1

= `lim_((y - 1 -> 0),(because y -> 1))  ((y^6 - (1)^6)/(y - 1))/((y^2 - (1)^2)/(y - 1))`

= `(lim_(y -> 1) (y^6 - (1)^6)/(y - 1))/(lim_(y -> 1) (y^2 - (1)^2)/(y - 1))`   .....`[lim_(x -> a) (f(x))/(g(x)) = (lim_(x -> a) f(x))/(lim_(x -> a) g(x))]`

= `(6 * (1)^(6 - 1))/(2 * (1)^(2 - 1))`

= `6/2`

= 3   ......`["Using" lim_(x -> a) (x^n - a^n)/(x - a) = n * a^(n - 1)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 239]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 5 | Page 239

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\] 


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to 0} \frac{\sin 3x}{5x}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\] 


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\] 


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


\[\lim_{x \to  } \frac{1 - \cos 2x}{x} is\]


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to 


\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to 


Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit :

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×