Advertisements
Advertisements
Question
\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]
Solution
\[\lim_{x \to \infty} \left[ \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}} \right]\]
\[\text{ Dividing the numerator and the denominator by } x: \]
\[ \lim_{x \to \infty} \left[ \frac{\frac{5 x^3 - 6}{x^3}}{\frac{\sqrt{9 + 4 x^6}}{x^3}} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{5 - \frac{6}{x^3}}{\sqrt{\frac{9}{x^6} + 4}} \right]\]
\[ = \frac{5}{\sqrt{4}}\]
\[ = \frac{5}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the Following limit:
`lim_(x->5) [(x^3 -125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`