Advertisements
Advertisements
Question
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
Options
\[\frac{1}{\sqrt{2}}\]
\[\frac{1}{2}\]
\[\frac{1}{2\sqrt{2}}\]
1
Solution
1/2
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2}\cos x - 1}{\cot x - 1}\]
\[\text{ Rationalising the numerator, we get }: \]
\[ = \lim_{x \to \frac{\pi}{4}} \left( \frac{\sqrt{2} \cos x - 1}{\cot x - 1} \right) \times \left( \frac{\sqrt{2} \cos x + 1}{\sqrt{2} \cos x + 1} \right)\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( 2 \cos^2 x - 1 \right)}{\left( \cos x - \sin x \right)} \times \frac{\sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( \cos^2 x - \sin^2 x \right)}{\left( \cos x - \sin x \right)} \times \frac{\sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( \cos x + \sin x \right) \sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \frac{\left( \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \right) \sin \frac{\pi}{4}}{\left( \sqrt{2}\cos \frac{\pi}{4} + 1 \right)}\]
\[ = \frac{\left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)\left( \frac{1}{\sqrt{2}} \right)}{\sqrt{2} . \frac{1}{\sqrt{2}} + 1}\]
\[ = \frac{\left( \frac{2}{\sqrt{2}} \right) \times \frac{1}{\sqrt{2}}}{2}\]
\[ = \frac{1}{2}\]
The correct answer is B.
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
If \[\lim_{x \to 0} kx cosec x = \lim_{x \to 0} x cosec kx,\]
\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Which of the following function is not continuous at x = 0?
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`