English

Lim X → 0 ( 1 + X ) 6 − 1 ( 1 + X ) 2 − 1 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\] 

Solution

\[\lim_{x \to 0} \left[ \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( 1 + x \right)^6 - 1}{x} \times \frac{x}{\left( 1 + x \right)^2 - 1} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( 1 + x \right)^6 - 1^6}{\left( 1 + x \right) - 1} \times \frac{\left( 1 + x \right) - 1}{\left( 1 + x \right)^2 - 1} \right]\] 

Let y = 1 + x
When x ​→ 0, then 1 + x → 1. 

\[\Rightarrow\]y ​→ 1 

\[\lim_{y \to 1} \left[ \left( \frac{y^6 - 1^6}{y - 1} \right) \times \frac{\left( y - 1 \right)}{y^2 - 1^2} \right]\]
\[ = \frac{6 \times \left( 1 \right)^{6 - 1}}{2 \times \left( 1 \right)^{2 - 1}}\]
\[ = \frac{6}{2}\]
\[ = 3\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.5 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.5 | Q 3 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.


\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]


\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\] 


\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\] 


\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number. 


\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\] 


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


Evaluate the following limit: 

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\] 


The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]


Evaluate the following limit:

`lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


If `f(x) = {{:(x + 2",",  x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`\underset{x->3}{lim}[sqrt(x +6)/(x)]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×