Advertisements
Advertisements
Question
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]
Solution
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]
\[ = \lim_{h \to 0} \frac{1 - \sin \left( \frac{\pi}{2} - h \right)}{\left( \frac{\pi}{2} - \left( \frac{\pi}{2} - h \right) \right)^2}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{h^2}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{\frac{4 h^2}{4}} \left[ \because \lim_{h \to 0} \frac{\sin h}{h} = 1 \right]\]
\[ = \frac{1}{2} \lim_{h \to 0} \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right)^2 \]
\[ \Rightarrow \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\]
\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]
\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`