English

Lim X → 27 ( X 1 / 3 + 3 ) ( X 1 / 3 − 3 ) X − 27 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 

Solution

\[\lim_{x \to 27} \frac{\left[ x^\frac{1}{3} + 3 \right] \left[ x^\frac{1}{3} - 3 \right]}{x - 27}\]
\[ = \lim_{x \to 27} \left[ \frac{\left( x^\frac{1}{3} + 3 \right) \left( x^\frac{1}{3} - 3 \right)}{\left( x^\frac{1}{3} \right)^3 - 3^3} \right]\]
\[ x \to 27\]
\[ \therefore x^\frac{1}{3} \to 3\]
\[Let y = x^\frac{1}{3} \]
\[ \lim_{y \to 3} \left[ \frac{\left( y + 3 \right) \left( y - 3 \right)}{y^3 - 3^3} \right]\]
\[ = \frac{\left( 3 + 3 \right)}{3 \times 3^{3 - 1}}\]
\[ = \frac{6}{3 \times 9}\]
\[ = \frac{2}{9}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.5 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.5 | Q 7 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]


\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\] 


\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\] 

 


\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\] 


\[\lim_{x \to 0} \frac{x}{\tan x} is\] 


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\]  is equal at 


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 


The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is 


Evaluate the Following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×