Advertisements
Advertisements
Question
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
Options
1
−1
\[\frac{1}{2}\]
\[- \frac{1}{2}\]
Solution
\[\frac{1}{2}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{\left( \frac{\pi}{2} - \left( \frac{\pi}{2} - h \right) \right) \sin h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{h \sin h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{\frac{\frac{4 h^2}{4}}{\frac{\sin h}{h}}}\]
\[ = \frac{2}{4}\]
\[ = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limit :
`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`