English

Lim X → ∞ 3 X − 1 + 4 X − 2 5 X − 1 + 6 X − 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]

Solution

\[\lim_{x \to \infty} \left[ \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\frac{3}{x} + \frac{4}{x^2}}{\frac{5}{x} + \frac{6}{x^2}} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{3x + 4}{5x + 6} \right]\]
\[\text{ Dividingthe numerator and the denominator by } x:\]

\[ \lim_{x \to \infty} \left[ \frac{3 + \frac{4}{x}}{5 + \frac{6}{x}} \right] = \frac{3}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.6 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.6 | Q 9 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\] 


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\] 


\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\] 


\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\] 


\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\] 


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]


\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\] 


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\]  is


\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


Which of the following function is not continuous at x = 0?


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limit:

`\underset{x->3}{lim}[sqrt(x +6)/(x)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×