English

lim x → 0 7 x cos x − 3 sin x 4 x + tan x - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\] 

Solution

\[\lim_{x \to 0} \left[ \frac{7x \cos x - 3 \sin x}{4x + \tan x} \right]\]  It is of the form \[\left( \frac{0}{0} \right)\] 

Dividing the numerator and the denominator by x

\[\Rightarrow \lim_{x \to 0} \frac{7\cos x - 3\left( \frac{\sin x}{x} \right)}{4 + \left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \frac{7 \lim_{x \to 0} \left( \cos x \right) - 3 \lim_{x \to 0} \left( \frac{\sin x}{x} \right)}{4 + \lim_{x \to 0} \left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \frac{7 . 1 - 3 . 1}{4 + 1}\]
\[ \Rightarrow \frac{4}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.7 [Page 50]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.7 | Q 10 | Page 50

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 0} 9\] 


\[\lim_{x \to 2} \left( 3 - x \right)\] 


\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\] 


\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\] 


\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\] 


\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\] 


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\] 


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\]  find the value of n


\[f\left( x \right) = \frac{a x^2 + b}{x^2 + 1}, \lim_{x \to 0} f\left( x \right) = 1\] and \[\lim_{x \to \infty} f\left( x \right) = 1,\]then prove that f(−2) = f(2) = 1


\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\] 


\[\lim_{x \to 0} \frac{\sin \left( 2 + x \right) - \sin \left( 2 - x \right)}{x}\]


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{x \to 0} \frac{x}{\tan x} is\] 


\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\]  is equal at 


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\]  equals 


\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to 


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×