Advertisements
Advertisements
Question
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\]
Solution
\[\lim_{x \to 0} \left[ \frac{\cos ax - \cos bx}{\cos cx - \cos dx} \right]\] It is of the form \[\left( \frac{0}{0} \right)\]
\[\Rightarrow \lim_{x \to 0} \left[ \frac{- 2\sin\left( \frac{ax + bx}{2} \right)\sin\left( \frac{ax - bx}{2} \right)}{- 2\sin\left( \frac{cx + dx}{a2} \right)\sin\left( \frac{cx - dx}{2} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\frac{\sin\left( \frac{ax + bx}{2} \right)}{\left( \frac{ax + b}{x} \right)} \times \left( \frac{ax + bx}{2} \right) \times \frac{\sin\left( \frac{ax - bx}{2} \right)}{\left( \frac{ax - bx}{2} \right)} \times \left( \frac{ax - bx}{2} \right)}{\frac{\sin\left( \frac{cx + dx}{2} \right)}{\left( \frac{cx + dx}{2} \right)} \times \left( \frac{cx + dx}{2} \right) \times \frac{\sin\left( \frac{cx - dx}{2} \right)}{\left( \frac{cx - dx}{2} \right)} \times \left( \frac{cx - dx}{2} \right)} \right]\]
\[ = 1 \times \lim_{x \to 0} \left[ \frac{\left( \frac{ax + bx}{2} \right)\left( \frac{ax - bx}{2} \right)}{\left( \frac{cx + dx}{2} \right)\left( \frac{cx - dx}{2} \right)} \right]\]
\[ = \lim_{x \to 0} \frac{x^2 \left( a + b \right)\left( a - b \right)}{x^2 \left( c + d \right)\left( c - d \right)}\]
\[ = \frac{a^2 - b^2}{c^2 - d^2}\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\]
\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\]
\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\]
\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\]
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.
Evaluate the Following limit:
`lim_(x->5) [(x^3 -125)/(x^5-3125)]`