हिंदी

Lim X → 0 Cos a X − Cos B X Cos C X − Cos D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 

उत्तर

\[\lim_{x \to 0} \left[ \frac{\cos ax - \cos bx}{\cos cx - \cos dx} \right]\] It is of the form \[\left( \frac{0}{0} \right)\] 

\[\Rightarrow \lim_{x \to 0} \left[ \frac{- 2\sin\left( \frac{ax + bx}{2} \right)\sin\left( \frac{ax - bx}{2} \right)}{- 2\sin\left( \frac{cx + dx}{a2} \right)\sin\left( \frac{cx - dx}{2} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\frac{\sin\left( \frac{ax + bx}{2} \right)}{\left( \frac{ax + b}{x} \right)} \times \left( \frac{ax + bx}{2} \right) \times \frac{\sin\left( \frac{ax - bx}{2} \right)}{\left( \frac{ax - bx}{2} \right)} \times \left( \frac{ax - bx}{2} \right)}{\frac{\sin\left( \frac{cx + dx}{2} \right)}{\left( \frac{cx + dx}{2} \right)} \times \left( \frac{cx + dx}{2} \right) \times \frac{\sin\left( \frac{cx - dx}{2} \right)}{\left( \frac{cx - dx}{2} \right)} \times \left( \frac{cx - dx}{2} \right)} \right]\]
\[ = 1 \times \lim_{x \to 0} \left[ \frac{\left( \frac{ax + bx}{2} \right)\left( \frac{ax - bx}{2} \right)}{\left( \frac{cx + dx}{2} \right)\left( \frac{cx - dx}{2} \right)} \right]\]
\[ = \lim_{x \to 0} \frac{x^2 \left( a + b \right)\left( a - b \right)}{x^2 \left( c + d \right)\left( c - d \right)}\]
\[ = \frac{a^2 - b^2}{c^2 - d^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.7 | Q 11 | पृष्ठ ५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]


Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\] 


Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\] 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.


Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×