हिंदी

Lim X → − 1 X 3 − 3 X + 1 X − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]

उत्तर

\[\lim_{x \to - 1} \left( \frac{x^3 - 3x + 1}{x - 1} \right)\]
\[ = \frac{\left( - 1 \right)^3 - 3\left( - 1 \right) + 1}{- 1 - 1}\]
\[ = \frac{- 1 + 3 + 1}{- 2}\]
\[ = \frac{- 3}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.2 | Q 11 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\] 


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\] 


Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\] 


\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]


\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\] 


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\] 


\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\]  is equal at 


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.


Evaluate the following Limit:

`lim_(x -> 0) ((1 + x)^"n" - 1)/x`


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×