हिंदी

Lim N → ∞ 1 − 2 + 3 − 4 + 5 − 6 + . . . . + ( 2 N − 1 ) − 2 N √ N 2 + 1 + √ N 2 − 1 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 

विकल्प

  • \[\frac{1}{2}\]

  • \[- \frac{1}{2}\]

  •  1

  •  −1 

MCQ

उत्तर

\[- \frac{1}{2}\] 

\[\lim_{n \to \infty} \left[ \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}} \right]\]
\[ = \lim_{n \to \infty} \left[ \frac{\left( 1 + 3 + 5 + . . . 2n - 1 \right) - \left( 2 + 4 + 6 + . . . 2n \right)}{\left( \sqrt{n^2 + 1} + \sqrt{n^2 - 1} \right)} \right]\]
\[ = \lim_{n \to \infty} \left[ \frac{\frac{n}{2}\left( 1 + 2n - 1 \right) - \frac{n}{2}\left( 2 + 2n \right)}{\left( \sqrt{n^2 + 1} + \sqrt{n^2 - 1} \right)} \right]\]
\[ = \lim_{n \to \infty} \left[ \frac{n^2 - n\left( n + 1 \right)}{\left( \sqrt{n^2 + 1} + \sqrt{n^2 - 1} \right)} \right]\]
\[ = \lim_{n \to \infty} \left[ \frac{- n}{\left( \sqrt{n^2 + 1} + \sqrt{n^2 - 1} \right)} \right]\]

Dividing the numerator and the denominator by n

\[= \lim_{n \to \infty} \left[ \frac{- 1}{\sqrt{1 + \frac{1}{n^2}} + \sqrt{1 - \frac{1}{n^2}}} \right] \]
\[ = \frac{- 1}{1 + 1}\]
\[ = \frac{- 1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.13 | Q 23 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\] 


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]


\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number. 


\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\] 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\] 


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to 


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is 


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


`1/(ax^2 + bx + c)`


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit :

`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×