Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
उत्तर १
`lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1)`
Put 1 – x = y
As x → 0, y → 1
∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1^8)/(y^2 - 1^2)`
= `lim_(y -> 1)((y^8 - 1^8)/(y - 1))/((y^2 - 1^2)/(y - 1)) ...[(because y -> 1"," therefore y ≠ 1","),(therefore y - 1 ≠ 0)]`
= `(lim_(y -> 1)(y^8 - 1^8)/(y - 1))/(lim_(y -> 1)(y^2 - 1^2)/(y - 1))`
= `(8(1)^7)/(2(1)^1) ...[because lim_(x -> "a")(x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= 4
उत्तर २
`lim_(x -> 0) ((1 - x)^8 - 1)/((1 - x)^2 - 1)`
Put 1 – x = y
As x → 0, y → 1
∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1)/(y^2 - 1)`
= `lim_(y -> 1) ((y^4 - 1)(y^4 + 1))/(y^2 - 1)`
= `lim_(y -> 1) ((y^2 - 1)(y^2 + 1)(y^4 + 1))/(y^2 - 1)`
= `lim_(y -> 1)(y^2 + 1) (y^4 + 1) ...[(because y -> 1 therefore y ≠ 1),(therefore y^2 ≠ 1),(therefore y^2 - 1 ≠ 0)]`
= (2) (2) = 4
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`