Advertisements
Advertisements
प्रश्न
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
उत्तर
`lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500
∴ `"k"(5)^("k" - 1) = 500 ...[because lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a")] = "na"^("n" - 1)]`
∴ k(5)k–1 = 4 x 125
∴ k(5)k–1 = 4 x (5)3
∴ k(5)k–1 = 4 x (5)4–1
Comparing both sides, we get
k = 4
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\]
\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]
\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\]
\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
`1/(ax^2 + bx + c)`
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`