Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
उत्तर
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[ = \lim_{h \to 0} \frac{1 - \left( 1 - h \right)^2}{\sin 2\pi\left( 1 - h \right)}\]
\[ = \lim_{h \to 0} \frac{2h - h^2}{- \sin 2\pi h}\]
\[ = \lim_{h \to 0} \frac{- \left( 2 - h \right)}{\frac{\sin 2\pi h}{h}}\]
\[ = \lim_{h \to 0} \frac{\left( h - 2 \right)}{\frac{2\pi \sin 2\pi h}{\left( 2\pi h \right)}}\]
\[ = \frac{0 - 2}{2\pi \times 1}\]
\[ = \frac{- 1}{\pi}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
\[\lim_{x \to \frac{3\pi}{2}} \frac{1 + {cosec}^3 x}{\cot^2 x}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
\[\lim_{x \to 0} \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`