Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
उत्तर
\[\lim_{x \to 5} \left[ \frac{x^3 - 125}{x^2 - 7x + 10} \right]\]
\[\text{ It is of the form } \frac{0}{0} . \]
\[ \lim_{x \to 5} \left[ \frac{x^3 - 5^3}{x^2 - 2x - 5x + 10} \right]\]
\[ = \lim_{x \to 5} \left[ \frac{\left( x - 5 \right)\left( x^2 + 5x + 5^2 \right)}{x\left( x - 2 \right) - 5\left( x - 2 \right)} \right] \left[ \because A^3 - B^3 = \left( A - B \right)\left( A^2 + AB + B^2 \right) \right]\]
\[ = \lim_{x \to 5} \left[ \frac{\left( x - 5 \right)\left( x^2 + 5x + 25 \right)}{\left( x - 2 \right)\left( x - 5 \right)} \right]\]
\[ = \frac{5^2 + 5 \times 5 + 25}{5 - 2}\]
\[ = \frac{75}{3}\]
\[ = 25\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{\sin \left( 2 + x \right) - \sin \left( 2 - x \right)}{x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]
\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
Evaluate the following limit:
`lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`