Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
उत्तर
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
\[ = \lim_{x \to 0} \frac{- 2\sin\left( \frac{ax + bx}{2} \right)\sin\left( \frac{ax - bx}{2} \right)}{- 2 \sin^2 \frac{cx}{2}} \left( 1 - \cos2\theta = 2 \sin^2 \theta \right)\]
\[ = \lim_{x \to 0} \frac{\left( \frac{a + b}{2} \right)x \times \frac{\sin\left( \frac{a + b}{2} \right)x}{\left( \frac{a + b}{2} \right)x} \times \left( \frac{a - b}{2} \right)x \times \frac{\sin\left( \frac{a - b}{2} \right)x}{\left( \frac{a - b}{2} \right)x}}{\frac{c^2 x^2}{4} \times \frac{\sin^2 \frac{cx}{2}}{\frac{c^2 x^2}{4}}}\]
\[ = \frac{\left( a + b \right)\left( a - b \right)}{c^2} \times \frac{\lim_{x \to 0} \frac{\sin\left( \frac{a + b}{2} \right)x}{\left( \frac{a + b}{2} \right)x} \times \lim_{x \to 0} \frac{\sin\left( \frac{a - b}{2} \right)x}{\left( \frac{a - b}{2} \right)x}}{\left( \lim_{x \to 0} \frac{\sin\frac{cx}{2}}{\frac{cx}{2}} \right)^2}\]
\[= \frac{a^2 - b^2}{c^2} \times \frac{1 \times 1}{1} \left( \lim_\theta \to 0 \frac{\sin\theta}{\theta} = 1 \right)\]
\[ = \frac{a^2 - b^2}{c^2}\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`
if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.
Which of the following function is not continuous at x = 0?
Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit:
`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`