Advertisements
Advertisements
प्रश्न
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
उत्तर
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
`therefore cos^2 beta x - cos^2alpha x`
`= cos^2betax - cos^2alphax + cos^2betax * cos^2alphax - cos^2betax * cos^2alphax`
= `cos^2 beta x - cos^2 beta x * cos^2 alpha x - cos^2 alpha x + cos^2 beta x * cos^2 alpha x`
= `cos^2 beta x (1 - cos^2 alpha x) - cos^2 alpha x (1 - cos^2 beta x)`
= `cos^2 beta x * sin^2 alpha x - cos^2 alpha x * sin^2 beta x`
= `(cos beta x * sin alpha x)^2 - (cos alpha x * sin beta x)`
= `(cos beta x * sin alpha x + cos alpha x * sin beta x)(cos beta x * sin alpha x - cos alpha x * sin beta x)`
= `sin (alpha x + beta x) sin (alphax - betax)` ...[sin (A ± B) = sin A cos B ± cos A sin B]
= `sin (alpha + beta)x sin (alpha - beta)x`
`therefore lim_(x->0) (x{sin (alpha + beta )x + sin (alpha - beta)x + sin 2 alpha x})/(sin (alpha + beta)x sin (alpha - beta) x)`
`lim_(x->0) ((x{sin (alpha + beta )x + sin (alpha - beta)x + sin 2 alpha x})/x^2)/((sin (alpha + beta)x sin (alpha - beta) x)/x^2)`
`lim_(x->0) ((sin (alpha + beta)x)/x + (sin (alpha - beta)x)/x + (sin 2 alpha x)/x)/((sin (alpha + beta)x)/x xx (sin (alpha - beta)x)/x)`
`lim_(x->0) ((sin (alpha + beta)x)/((alpha + beta) x) xx (alpha + beta) + (sin (alpha - beta)x)/((alpha - beta)x) xx (alpha - beta) + (sin 2 alpha x)/(2alphax) xx 2alpha)/((sin (alpha + beta)x)/((alpha + beta)x) xx (alpha + beta) xx (sin (alpha - beta)x)/((alpha - beta)x) xx (alpha - beta))`
`= (alpha + beta + alpha - beta + 2alpha)/((alpha + beta)(alpha - beta))`
`= (4alpha)/(alpha^2 - beta^2)`
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]
\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]
Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the Following limit:
`lim_(x->5) [(x^3 -125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`