हिंदी

Lim X → 0 ( C O S E C X − Cot X ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]

उत्तर

\[\lim_{x \to 0} \left[ cosec x - \cot x \right]\]
\[ = \lim_{x \to 0} \left[ \frac{1}{\sin x} - \frac{\cos x}{\sin x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{1 - \cos x}{\sin x} \right] \left[ \because 1 - \cos A = 2 \sin^2 \left( \frac{A}{2} \right) \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin^2 \left( \frac{x}{2} \right)}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \right]\]
\[ = \lim_{x \to 0} \left( \tan \left( \frac{x}{2} \right) \right)\]
\[ = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.7 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.7 | Q 59 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\] 


\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x -  a}\]


\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\] 


\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\] 


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{\sin 3x}{5x}\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]


\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


`1/(ax^2 + bx + c)`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×