हिंदी

1ax2+bx+c - Mathematics

Advertisements
Advertisements

प्रश्न

`1/(ax^2 + bx + c)`

योग

उत्तर

`d/(dx) (1/(ax^2 + bx + c)) = ((ax^2 + bx + c) d/(dx) (1) - 1 * d/(dx) (ax^2 + bx + c))/(ax^2 + bx + c)^2`

= `((ax^2 + bx + x) xx 0 - (2ax + b))/(ac^2 + bx + c)^2`  .....[Using quotient rule]

= `(-(2ax + b))/(ax^2 + bx + c)^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 42 | पृष्ठ २४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\] 


\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\] 


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\] 


\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\] 


\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\] 


\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


Evaluate the following limit:

`lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


If `f(x) = {{:(x + 2",",  x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×