Advertisements
Advertisements
प्रश्न
`1/(ax^2 + bx + c)`
उत्तर
`d/(dx) (1/(ax^2 + bx + c)) = ((ax^2 + bx + c) d/(dx) (1) - 1 * d/(dx) (ax^2 + bx + c))/(ax^2 + bx + c)^2`
= `((ax^2 + bx + x) xx 0 - (2ax + b))/(ac^2 + bx + c)^2` .....[Using quotient rule]
= `(-(2ax + b))/(ax^2 + bx + c)^2`
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\]
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\]
\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`
Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when" x ≠ pi/2),(3",", x = pi/2 "and if" f(x) = f(pi/2)):}` find the value of k.
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.