Advertisements
Advertisements
प्रश्न
cos (x2 + 1)
उत्तर
Let `f(x) = cos(x^2 + 1)` .......(i)
⇒ `f(x + Δx) = cos[(x + Δx)^2 + 1]` ......(ii)
Subtracting equation (i) from equation (ii) we get
`f(x + Δx) - f(x) = cos[(x + Δx)^2 + 1] - cos(x^2 + 1)`
Dividing both sides by Δx we get
`(f(x + Δx) - f(x))/(Δx) = (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)`
⇒ `lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)`
f'(x) = `lim_(Δx -> 0) (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)` ......[By definitions of differentiations]
`- 2sin [((x + Δx)^2 + 1 + x^2 + 1)/2]`
= `lim_(Δx - > 0) (sin[((x + Δx)^2 + 1 - x^2 - 1)/2])/(Δx)` .....`[because cos C - cos D = - 2sin (C + D)/2 * sin (C - D)/2]`
`-2 sin [(x^2 + Δx^2 + 2x * Δx + x^2 + 2)/2]`
= `lim_(Δx -> 0) (-2 sin [x^2 + (Δx^2)/2 + x Δx + 1] sin[Δx (Δx + 2x)/2])/(Δx)`
`- 2sin[x^2 + (Δx^2)/2 + x Δx + 1]`
= `lim_(Δx -> 0) (sin [Δx (Δx + 2x)/2])/(Δx[(Δx + 2x)/2]) xx ((Δx + 2x)/2)`
= `lim_((Δx -> 0),(because Δx [(Δx + 2x)/2] -> 0)) -2sin [x^2 (Δx^2)/2 + xΔx + 1] * (sin[Δx ((Δx + 2x))/2])/(Δx[(Δx + 2x)/2]) xx [(Δx + 2x)/2]`
Taking limit, we have
= `-2 sin (x^2 + 1) * 1 * (x)`
= `- 2x sin(x^2 + 1)` ......`[because lim_(x -> 0) sinx/x = 1]`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
`x^(2/3)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.