मराठी

If f(x) = x sinx, then f" π2 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = x sinx, then f" `pi/2` is equal to ______.

पर्याय

  • 0

  • 1

  • –1

  • `1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

If f(x) = x sinx, then f" `pi/2` is equal to 1.

Explanation:

As f′(x) = x cosx + sinx

So, f' `pi/2 = pi/2 cos  pi/2 + sin  pi/2` = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Solved Examples [पृष्ठ २३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Solved Examples | Q 28 | पृष्ठ २३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`x^(2/3)`


x cos x


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 0) |sinx|/x` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×