मराठी

Limy→0(x+y)sec(x+y)-xsecxy - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`

बेरीज

उत्तर

`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`

= `lim_(y -> 0) (x sec(x + y) + y sec (x + y) - x sec x)/y`

= `lim_(y -> 0) ([x sec (x + y) - x sec x])/y + lim_(y -> 0) (y sec (x + y))/y`

= `lim_(y -> 0) (x[sec(x + y) - sec x])/y + lim_(y -> 0) sec (x + y)`

= `lim_(y -> 0) (x[1/(cos(x + y)) - 1/cosx])/y + lim_(y -> 0) sec(x + y)`

= `lim_(y -> 0) x[(cosx - cos(x + y))/(y * cos(x + y) * cos x)] + lim_(y -> 0) sec(x + y)`

= `lim_(y -> 0) (x[-2 sin ((x + x + y)/2) * sin ((x - x - y)/2)])/(y cos(x + y) * cos x) + lim_(y -> 0) sec(x + y)`

= `(x[- 2 sin (x + y/2) * sin(- y/2)])/(cos(x + y) * cos x * y) + lim_(y -> 0) sec(x + y)`

= `lim_((y -> 0),(because  y/2 -> 0)) x[([2 sin (x + y/2) sin (y/2)])/(cos (x + y) * cos x * (y/2) * 2)] + lim_(y -> 0) sec(x + y)`

∴ Taking the limits we have

= `x[sin x * 1/(cosx * cos x)] + sec x`

= `x sec x tan x + sec x`

= `sec x(x tan x + 1)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 47 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/4)  (sin x - cosx)/(x - pi/4)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


`lim_(x -> 3^+) x/([x])` = ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×