मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from the given alternatives. limx→π3(tan2x-3sec3 x-8) = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =

पर्याय

  • 1

  • `1/2`

  • `1/3`

  • `1/4`

MCQ
बेरीज

उत्तर

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8)) = 1/3`

Explanation:

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))`

`= lim_(x → π/3) ((sec^2x - 1 - 3)/(sec^3x - 8))       ...[(tan^2 x + 1 = sec^2 x),(∵ tan^2 x = sec^2x - 1)]`

`= lim_(x → π/3) ((sec^2x - 4)/(sec^3x - 8))`

`= lim_(x → π/3) ((sec^2x - (2)^2)/(sec^3x - (2)^3))`

`= lim_(x → π/3) ((secx - 2)(secx + 2))/((sec x - 2)(sec^2 x + 2sec x + 4))  ...[(a^2 - b^2 = (a - b)(a + b)),(a^3 - b^3 = (a - b)(a^2 + ab + b^2))]`

`= lim_(x → π/3) (secx + 2)/(sec^2 x + 2sec x + 4)`

`= (sec  π/3 + 2)/((sec  π/3)^2 + 2sec  π/3 + 4)`

`= (2 + 2)/((2)^2 + 2(2) + 4)`

`= 1/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Miscellaneous Exercise 7.1 [पृष्ठ १५८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Limits
Miscellaneous Exercise 7.1 | Q I. (5) | पृष्ठ १५८

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`(ax + b)/(cx + d)`


`x^(2/3)`


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 3^+) x/([x])` = ______.


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×