मराठी

Limx→1[x-1], where [.] is greatest integer function, is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.

पर्याय

  • 1

  • 2

  • 0

  • Does not exists

MCQ
रिकाम्या जागा भरा

उत्तर

`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to does not exists.

Explanation:

Since R.H.S. = `lim_(x -> 1^+) [x - 1]` = 0

And L.H.S. = `lim_(x -> 1^-) [x - 1]` = –1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Solved Examples [पृष्ठ २३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Solved Examples | Q 25 | पृष्ठ २३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> pi/4)  (sin x - cosx)/(x - pi/4)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


cos (x2 + 1)


x cos x


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


`lim_(x -> 3^+) x/([x])` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×