मराठी

Evaluate: limx→asinx-sinax-a - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`

बेरीज

उत्तर

Given that `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`

= `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a)) xx (sqrt(x) + sqrt(a))/(sqrt(x) + sqrt(a))`

= `lim_(x -> a) ((sin x - sin a)(sqrt(x) + sqrt(a)))/(x - a)`

= `lim_(x -> a) ((2 cos  (x + a)/2 * sin  (x - a)/2)(sqrt(x) + sqrt(a)))/(x - a)`

= `lim_((x -> a),(because  (x - a)/2 -> 0)) (2 cos  (x + a)/2 * (sin  (x - a)/2)/(2 xx (x - a)/2)) (sqrt(x) + sqrt(a))`

= `lim_(x -> a) cos((x + a)/2)(sqrt(x) + sqrt(1))`  .....`[because  lim_((x - a)/2 -> 0)  (sin  (x - a)/2)/((x - a)/2) = 1]`

Taking limit we have

= `cos ((a + a)/2)(sqrt(a) + sqrt(a))`

= `cos a xx 2sqrt(a)`

= `2sqrt(a) * cos a`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 24 | पृष्ठ २४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`x^(2/3)`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×