Advertisements
Advertisements
प्रश्न
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
उत्तर
We have `lim_(x -> 0) (2sin ((a + b))/2 x sin ((a - b) x)/2)/(2 (sin^2 cx)/2)`
= `lim_(x -> 0) (2sin ((a + b)x)/2 * sin ((a - b)x)/2)/x^2 * x^2/(sin^2 (cx)/2)`
= `lim_(x -> 0) (sin ((a + b)x)/2)/(((a + b)x)/2 * 2/(a + b)) * (sin ((a - b)x)/2)/(((a - b)x)/2 * 2/(a - b)) * ((cx)^2/2 xx 4/c^2)/(sin^2 (cx)/2)`
= `(a + b)/2 xx (a - b)/2 xx 4/c^2`
= `(a^2 - b^2)/c^2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
cos (x2 + 1)
`x^(2/3)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 0) |sinx|/x` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
`lim_(x -> 3^+) x/([x])` = ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.