Advertisements
Advertisements
प्रश्न
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
उत्तर
We have `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
= `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x)) xx (sqrt(a + 2x) + sqrt(3x))/(sqrt(a + 2x) + sqrt(3x))`
= `lim_(x -> a) (a + 2x - 3x)/((sqrt(3a + x) - 2sqrt(x))(sqrt(a + 2x) + sqrt(3x))`
= `lim_(x -> a) (((a - x))(sqrt(3a + x) + 2sqrt(x)))/((sqrt(a + 2x) + sqrt(3x))(sqrt(3a + x) - 2sqrt(x))(sqrt(3a + x) + 2sqrt(x))`
= `lim_(x -> a) ((a - x) sqrt(3a + x) + 2sqrt(x))/((sqrt(a + 2x) + sqrt(3x))(3a + x - 4x))`
= `(4sqrt(a))/(3 xx 2sqrt(3a))`
= `2/(3sqrt(3))`
= `(2sqrt(3))/9`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
cos (x2 + 1)
`(ax + b)/(cx + d)`
x cos x
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
`lim_(x -> 0) |sinx|/x` is ______.